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Abstract

Drawing, as a skill, is closely tied to many creative fields and is a unique practice for every
individual. Drawing has been shown to improve various skills that are critical in engineering
education; cognitive and communicative abilities, such as visual communication, problem-solving
skills, students’ academic achievement, awareness of and attention to surrounding details, and
sharpened analytical skills. While the base concept of drawing is a basic skill, the mastery of this
skill requires extensive practice and it can often be significantly impacted by the self-efficacy of
an individual. Self-efficacy is one’s belief in his or her capacity to accomplish specific tasks.
Self-efficacy is important when learning new skills because it aids in mastery, and also enables us
to understand skill development. Sketchtivity is an intelligent tutoring system developed by Texas
A&M University to facilitate the growth of basic sketching skills and track their performance.
Sketching is a form of drawing that’s focused on clear communication and generation of ideas.
Skill development depends in part on students’ self-efficacy associated with their sketching
abilities. Rather than focusing only on sketching self-efficacy, we wanted to develop a more
general tool for assessing drawing self-efficacy which could be applied in more domains than just
our own and be useful for other researchers, educators, and technologists. A detailed validity
study of the Drawing Self-Efficacy Instrument(DESI) is outlined in this paper.

Introduction

Drawing is a valuable skill that is interwoven with various fields and disciplines and unique for
each individual. Cognitive and communicative skills such as visual communication, problem-
solving skills, students’ academic achievement, awareness of and attention to surrounding details,
and sharpened analytical skills have been shown to improve with an increase in drawing skill
[1, 2]. The physical act of drawing stimulates both sides of the brain and improves peripheral
skills of writing, 3-D spatial recognition, critical thinking, and brainstorming [1–4]. However, as
early as grades K-12, students with spatial abilities are overlooked by current gifted assessment
programs [5]. Due to emphasis on mathematics and verbal reasoning in standardized testing, and
less attention to assessment of spatial skills, these students may not be seen as likely to succeed
according to current predictive models of academic success [6], despite its necessity in STEM



fields and impact on other STEM subjects [7].

Studies by Sorby have consistently demonstrated that Spatial visualization skills are highly predic-
tive of the success of an individual in engineering discipline. Students who are trained in sketching
reports improved Spatial visualization skills [8]. Thus, learning sketching which is a form of draw-
ing will contribute towards student’s success in engineering. While the basic concept of drawing
is relatively a common skill, mastery of the skill requires extensive focused practice and is signif-
icantly impacted by self-efficacy [9]. The development of drawing skill also depends in part on a
person’s self-efficacy associated with their drawing abilities [9]; higher self-efficacy leads to better
skill development. Schunk found that ability feedback for early success during skill development
promotes better achievement outcomes than that of ability feedback for later successes [9].

A mechanism to address the development of self-efficacy during drawing skill learning progres-
sion was implemented into the Sketchtivity software by Williford et al. [10–12]. Sketchtivity is an
intelligent tutoring system to facilitate growth of basic sketching skills and track user performance.
Sketching is a more loose, rapid form of drawing focused on clear communication and generation
of ideas. Sketchtivity allows users to have regular and consistent feedback based on the user’s
performance. This early feedback mechanism can boost drawing self-efficacy during their journey
towards mastery while tracking user progress over time.

One of the goals of Sketchtivity was to increase drawing self-efficacy of users along with drawing
ability. Having a method to measure learner self-efficacy is intrinsic to understanding the process of
drawing skill development.The absence of an instrument to assess drawing self-efficacy prevents us
from evaluating the impact of the intelligent tutoring system on user’s drawing self-efficacy. Hence,
there is a need for an instrument that assesses drawing self-efficacy to make sure that students
are mastering sketching and thereby gaining skills that contribute to their success in engineering.
In addition, it is critical to gauge the drawing self-efficacy of individuals to compare traditional
pedagogy with new teaching methods such as intelligent tutoring systems. Hence, the focus of
this work was to define and develop a measurement tool to assess drawing self-efficacy. In order
to expand the benefit of the assessment tool to more domains, other researchers, educators, and
technologists, we developed a more inclusive drawing skill measurement tool rather than a tool to
measure sketching self-efficacy of Sketchtivity users alone.

This paper describes the development, methodology, and performance of the Drawing Self-Efficacy
Instrument (DSEI). During the development phase of our study, we hypothesized four factors to
measure the drawing self-efficacy of the students that included:

• Drawing specific things (such as products, buildings, people, etc.)

• Drawing to communicate ideas

• Drawing to solve problems

• Drawing to create

We evaluated the DSEI’s validity through analysis of the factor structure and functionality when
assessing the drawing self-efficacy of high school engineering and art students.



Literature Review

Self-efficacy in education represents students’ feelings of confidence in their ability to perform
learning-related actions. It arises from the study of internal agency and its relationship to the
environment, and is an indicator of a person’s capabilities as measured by their self-beliefs [13].
The pursuit of learning goals is mediated by students’ interests and the activities they perform
to reach their goals [14]. Self-efficacy also interacts with outcome expectations, which are the
anticipated consequences of performing a behavior, to reinforce student’s perceptions of which
actions are successful, and ultimately determine whether and how students will pursue goals [13,
14]. Self-efficacy also relies on student’s self-regulatory abilities to evaluate goals, organize and
focus their actions towards reaching them, and engage in stress-reducing and motivating strategies
along the way [15]. Self-efficacy and outcome expectations are significantly influenced by past
experiences, both positive and negative, that inform the likelihood of success and allow students to
choose those behaviors which will help them achieve their goals.

There are many existing measures of self-efficacy in STEM and design education. The Science
Self-Efficacy Scale (SESS) was developed by McBride et al. [16] to measure the confidence of arts
and communication university students towards science literacy activities and applications. Sahen-
dra linked mathematical self-efficacy with representation during mathematics problem-solving and
found that high self-efficacy students were more likely to use strategies requiring multiple repre-
sentations, and reference those representation when verifying their solutions [17]. In engineering,
Lent et al. [14] measured self-efficacy of succeeding in engineering courses as (a) completing basic
science and math requirements with good grades, (b) excelling in upcoming semesters and years,
and (c) completing required upper-level courses for the degree. Carberry et al. [18] developed
an instrument for measuring engineering design self-efficacy. It asked students to rate their con-
fidence, motivation, anticipated success, and anxiety in performing engineering design activities
such as identifying and researching a design need, developing design solutions, prototyping, and
evaluating and testing the design. This scale was later applied by Hilton et al. [19] to measure
improved design self-efficacy after a drawing intervention with a variety of approaches with free-
hand, 2D, and 3D drawing. However, there is a lack of instruments designed to assess drawing
self-efficacy directly in STEM education as well as art and design.

Intelligent tutoring systems have many features which support the development of self-efficacy
during drawing instruction. Mastery of drawing skill relies on self-efficacy, and students who
repeatedly experience success when attempting drawing will have more positive outcome expecta-
tions and greater self-efficacy, which impacts future activity selection and practice [14]. Feedback
is another important feature of intelligent tutors for promoting self-efficacy in drawing skill devel-
opment. As large class sizes and online learning are becoming more prevalent, instructors are not
able to provide individual feedback to all students, which has a negative effect on their self-esteem
and learning experiences [12, 20–22]. Universally accessible feedback and personalized training
features can support equity and student-centered learning by promoting self-efficacy where many
students lack confidence and expertise. More accurate grading and personalized guidance during
practice are possible with the use of intelligent drawing tools.

One such tool is DrawMyPhoto, a sketch-based tutoring system which generates portrait draw-
ing tutorials through intelligently-generated steps and real-time feedback [23]. Williford et al.



collected participants’ self-reported qualitative perceptions of confidence towards sketching after
using the tool and found a greater improvement in self-perceptions of drawing ability in partic-
ipants who had received full tutoring assistance than in participants who received no feedback
and guidance, however no actual self-efficacy instrument was used. PortraitSketch from Xie et
al. [24] similarly provides assistance in drawing portraits, but does so by tweaking user-generated
strokes to conform better to the underlying portrait image. They found that the system did improve
feelings of self-reported “ownership” of drawings and confidence in drawing ability, but again no
self-efficacy instrument was used.

ZenSketch is another tool that takes more of a gamification approach to improve self-efficacy in
basic line work. Students have reported improved motivation and self-efficacy from playing the
game [25, 26], but the findings were largely qualitative.

This study examines self-efficacy with the tool Sketchtivity, a sketch-tutoring system that is fo-
cused on providing drawing feedback according to students’ prior drawing experience and learning
pace [10–12, 19, 27, 28]. Sketchtivity uses machine learning algorithms to support student learning
through practice of freehand sketching in perspective.

While many educational drawing tools have been explored with great potential to improve drawing
self-efficacy, few studies have tried to measure student’s self-efficacy in their drawing ability in a
truly comprehensive and quantitative manner that can be replicated in other studies.

Methods

A. Instrument Development

According to Fabrigar, the soundness of the items that are included in an instrument have an im-
portant role in utilizing the results obtained from Exploratory Factor Analysis (EFA) [29]. The
Drawing Self Efficacy Instrument (DSEI) consists of 13 items that addresses four areas of Draw-
ing efficacy. The DSEI was reviewed by an experienced designer and drawing instructor, Professor
Wayne Li with more than 14 years of experience teaching drawing at Stanford and Georgia Tech.
He confirmed that the questions were strong and promising for assessing confidence in drawing
ability.

Fabrigar suggests that researchers must pay close attention while defining the respective domain
of interest and in selecting the items to measure [29]. The four factors in our study included
drawing specific things, drawing to communicate ideas, drawing to solve problems, and drawing
to create. The results obtained from EFA are more accurate if each of the factors are represented by
multiple items [29]. In order to represent the first factor, “drawing specific things”, six items were
designed including drawing products, buildings, person, vehicle, 2D, and 3D. In order to represent
the second factor, “drawing to communicate ideas”, three items were designed including drawing
to communicate ideas, drawing to explain or teach a concept to others, and drawing to generate
creative ideas for a project. In order to measure the third factor, “drawing to solve problems”,
two items were developed that included drawing to think through a truss problem, and drawing
under pressure to come up with an idea. In order to measure the fourth factor, “drawing to create”,
two items were developed that included drawing to express myself and drawing from imagination.
Fabrigar also recommends that a factor is represented by three to five items while designing studies



for performing EFA [29]. The hypothesized third and fourth factors in our original hypothesis were
represented by only two items each.

B. Participants

The participants in this study to test the performance of our Drawing Self-Efficacy Instrument
(DSEI) were high school students enrolled in three different courses from three different high
schools in Texas. The demographic distribution of students who participated in the surveys was
not collected, however, we do have the data of the school districts through district aggregated
“snapshots” each year [30]. Table 1 presents the demographics including race and economic dis-
advantage percentages of respective school districts.

Table 1: Demographics of the students in the three participating school districts [30].

District # Students White Hispanic
African

American
American

Indian
Asian

Two or
More Races

Economically
Disadvantaged

Lovejoy 4,055 78.2 7.9 2.4 0.7 6.3 4.4 2.6
Giddings 1,916 32.2 55.7 9.1 0.1 0.6 2.3 69.5
Cedar Ridge 48,142 40.7 30.4 8.7 0.4 15.5 4.1 25.9

C. Data Collection

Data was collected in the Fall of 2017. Sketchtivity was deployed to three high school courses
with teachers who were already teaching sketching as part of their curriculum. These teachers had
participated in a summer research program with Texas A&M University. Two of the courses were
introductory engineering courses, called Principles of Engineering and Introduction to Engineering
Design while another was an art class called Fundamentals of Art. The instructors were encouraged
to use the tool as little or as much as they wanted, to avoid drastically altering their curriculum.

As part of the pre-test, a 13 item drawing self-efficacy questionnaire was deployed to students. The
response was collected in the form of scores ranging from 0–10, along with gender information of
participants. Publicly available district data was used to gather demographic data on race. There
were 222 students in total, of which, 70 were female and 152 were male; 2 students did not fill in
the course or gender details.

Table 2: Participants in the study

District Course No of students in Sample Male Female
Lovejoy Introduction to Engineering Design 16 13 3
Giddings Fundamentals of Art 109 50 59
Cedar Ridge Principles of Engineering 95 88 7

D. Data analysis

Factor analysis, a branch of multivariate analysis consisting of utilizing mathematical techniques to
discover patterns among interrelated items and to discover the simplest way to interpret measured
items, was employed in our study [31, 32]. Exploratory factor analysis (EFA) was used as a factor



analysis technique to discover patterns by identifying the number of unobserved underlying factors
and their underlying factor structure without making any prior assumptions about the relationship
among measured items [29].

As a prerequisite for performing EFA analysis on the DSEI, we examined descriptive statistics,
internal reliability, and bivariate correlation of the individual items [29]. All data analysis was
performed using Excel, R, and Python. The behavior of the 13 individual items was assessed by
examining the mean, standard deviation, skew and kurtosis. It was ensured that the responses of all
the 13 items in the DSEI fell within the expected range of descriptive statistics. Skew and kurtosis
coefficients were the employed asz measures of univariate normality. In order to assess the internal
reliability, Cronbach’s alpha provided us with a degree of consistency between individual items in
the DSEI, and also helped us identify if any items should be removed [33]. An item that lowers
the Cronbach’s alpha of the DSEI might not potentially be measuring the main construct that we
intend to measure [33]. The inter-item correlations were also examined prior to performing EFA.
The linear bivariate correlation of all individual item pairs helped us to examine how well the
items correlated with each other; items that are highly correlated with each other measure a single
underlying construct [34]. Items with a correlation less than 0.30 may need to be removed as it
might indicate a measurement error [34].

Further, in order to determine if the data were suitable for performing EFA, Bartlett’s Test of
Sphericity and the Kaiser-Meyer-Olkin Sampling Adequacy Test were performed. Bartlett’s Test
of Sphericity helps us to determine if the items are related to each other [35]. A value that is
less than 0.05 indicates that the data is suitable for factor analysis. KMO value measures the
proportion of variance in the items that are caused by underlying factors. KMO values greater than
0.8 indicates that data is suitable for EFA. A value less than 0.5 indicates that data is not suitable
for EFA.

The 13 items are a measure of every factor that exists, and the loading pattern helps us to identify
the factor and items that have the strongest relationship between each other. Factor loading values
close to -1 or 1 indicates that the factor is strongly represented by the item. Factor loading values
close to 0 indicates that the factor is weakly represented by the item. According to Kline, factor
loading values of 0.30 or higher is considered to be strong for a study with 100 participants [36].
Best practices in using EFA analysis requires decision making in regards to factor extraction, num-
ber of factors to retain, and rotation method. To obtain the best result for normally distributed data,
Maximum Likelihood was utilized as a factor extraction method. Scree Test [37] was utilized to
find Eigenvalues greater than 1 for the purpose of finding the recommended factors to retain. Pro-
max [38], an oblique rotation method that allows correlation between factors was used to get the
accurate solution [29]. A systematic and detailed EFA was performed and three models with two
factors, three factors, and four factors respectively were examined to find the best fitting model.
The goodness of fit indices such as Chi-square, Tucker-Lewis Index (TLI) [39], root mean square
of the residuals (RMSR), and the root mean square error of approximation (RMSEA) were utilized
for examining and comparing the fitness of the three models [40].



Results

A. Descriptive Statistics

The descriptive statistics of the 13 items that were developed for the Drawing Self-Efficacy Instru-
ment (DSEI) were calculated (see Table 3). The mean score of participant responses ranged from
4.36 to 6.96 on the zero to ten point Likert-type scale questionnaire. The standard deviation ranged
from 2.43 to 2.86. The skew values were less than or equal to |0.6| for all items except for an item,
“Drawing a 2D Object” whose skew was -1.29. The kurtosis values ranged from -1.74 to 1.61.

Table 3: Univariate Summary Statistics(n=222).

Items M SD Skew Kurtosis
Drawing to communicate ideas to others 5.68 2.55 -0.27 -1.31
Drawing to express myself 5.49 2.79 0.03 -1.74
Drawing to generate creative ideas for a project 6.25 2.43 -0.25 -1.15
Drawing when I am under pressure to come up with an idea 5.09 2.76 -0.02 -0.75
Drawing to explain or teach a concept to others 5.58 2.64 -0.16 -1.22
Drawing a 2D object 6.96 2.67 -1.29 1.61
Drawing a 3D object 5.33 2.74 -0.39 0.20
Drawing a person 4.36 2.86 0.41 -0.59
Drawing a product 5.78 2.51 -0.26 -0.21
Drawing a vehicle 4.85 2.54 0.60 -0.57
Drawing a building 6.33 2.48 -0.34 -0.51
Drawing something from my imagination 6.00 2.70 -0.28 -1.14
Drawing to think through a problem 5.45 2.72 0.57 -0.75

B. Reliability

The reliability of the Drawing Self-Efficacy Instrument (DSEI) with 13 items as calculated by
Cronbach’s Alpha was 0.943. A value of Cronbach’s Alpha between 0.7 and 0.9 is considered
good, while a value above 0.9 is considered excellent [41]. As the reliability score was excellent,
no items were removed.

C. Bivariate Correlations

The correlation between items ranged from 0.39 to 0.75, suggesting that the 13 items were well
interconnected to each other (see Figure 1). As none of the bivariate correlations among items
were less than 0.30, no item was removed prior to conducting EFA.



Figure 1: Correlation Matrix of Self Efficacy Instrument (DSEI)

D. Exploratory Factor Analysis

The dataset was subject to EFA with Maximum Likelihood Extraction method and Promax rota-
tion. The KMO values for the 13 individual items were above 0.91, and the KMO measure was
0.9, indicating that the data were suitable for performing EFA. Bartlett’s Test of Sphericity (χ2(78)
= 2092.49, p = 0) indicated that the items were highly related to each other. The Scree plot of the
eigenvalues suggested a Two-factor structure for the model (see Figure 2).

Figure 2: Scree Plot of Eigenvalues

Below is a table that describes the factor loadings of 13 items for a Two-Factor Model after rotation
(see Table 4). Both factors were represented by six items. Item 12 (“Draw something from my
imagination”) cross-loaded onto both factors with slightly higher loading on second factor. For



each variable, the amount of variance explained by the factor or communality (h2) ranged from
0.39 to 0.8. Hoffman’s index of complexity (com) was very high for Item 12 (Drawing something
from my imagination) indicating that it loaded onto both the factors. See Figure 3 for a visual
representation of the Two-factor structure. The Sum of the Square loadings are 4.04, 3.88 for
factor 1 and factor 2 respectively.

Table 4: Two-Factor Model Item Factor Loadings.

Items F1 F2 h2 u2 com
Drawing to communicate ideas to others 0.73 0.14 0.71 0.29 1.1
Drawing to express myself 0.56 0.19 0.52 0.48 1.2
Drawing to generate creative ideas for a project 0.70 0.18 0.73 0.27 1.1
Drawing when I am under pressure to come up with an idea 0.99 -0.22 0.68 0.32 1.1
Drawing to explain or teach a concept to others 0.72 0.13 0.69 0.31 1.1
Drawing a 2D object 0.14 0.54 0.43 0.57 1.1
Drawing a 3D object 0.25 0.50 0.52 0.48 1.5
Drawing a person 0.20 0.50 0.45 0.55 1.3
Drawing a product 0.18 0.75 0.82 0.18 1.1
Drawing a vehicle -0.01 0.81 0.66 0.34 1.0
Drawing a building -0.17 0.93 0.64 0.36 1.1
Drawing something from my imagination 0.32 0.34 0.39 0.61 2.0
Drawing to think through a problem 0.54 0.32 0.68 0.32 1.6

Figure 3: Two-Factor Structure

Below is a table that describes the factor loadings of 13 items for a Three-factor Model. The first
and second factors consisted of five items each, and the third factor consisted of three items. For
each variable, the amount of variance explained by the factor or communality (h2) ranged from
0.43 to 0.81. Hoffman’s index of complexity (com) was highest for Items 8 and 13 (“Drawing a
person” and “Drawing to think through a problem”). See Figure 4 for a visual representation of



the Three-factor structure.The Sum of the Square loadings are 3.19, 3.29 and 2.00 for factor one,
factor two, and factor three respectively.

Table 5: Three-Factor Model Item Factor Loadings.

Items F1 F2 F3 h2 u2 com
Drawing to communicate ideas to others 0.63 0.11 0.15 0.70 0.30 1.2
Drawing to express myself 0.17 -0.14 0.81 0.72 0.28 1.1
Drawing to generate creative ideas for a project 0.59 0.14 0.19 0.73 0.27 1.3
Drawing when I am under pressure to come up
with an idea 0.93 -0.19 0.05 0.68 0.32 1.1

Drawing to explain or teach a concept to others 0.86 0.21 -0.21 0.77 0.23 1.2
Drawing a 2D object 0.11 0.51 0.08 0.43 0.57 1.1
Drawing a 3D object 0.26 0.50 0.00 0.52 0.48 1.5
Drawing a person -0.04 0.33 0.47 0.51 0.49 1.8
Drawing a product 0.14 0.69 0.13 0.81 0.19 1.2
Drawing a vehicle 0.00 0.80 0.02 0.66 0.34 1.0
Drawing a building -0.11 0.96 -0.09 0.67 0.33 1.0
Drawing something from my imagination -0.1 0.03 0.82 0.60 0.40 1.0
Drawing to think through a problem 0.46 0.27 0.16 0.68 0.32 1.9

Figure 4: Three-Factor Structure

Below is a table that describes the factor loadings of 13 items for a Four-factor Model (see Table 6).
Two items loaded onto Factor 1, three items loaded onto Factors 3 and 4 respectively, and five
items loaded onto Factor 2. For each variable, the amount of variance explained by the factor or



communality (h2) ranged from 0.51 to 1.00. Hoffman’s index of complexity (com) was highest for
Item 13 (“Drawing to think through a problem”). See Figure 5 for a visual representation of the
Four-factor structure. The Sum of the Square loadings are 1.47, 3.15, 2.41, and 2.05 for factor one,
factor two, factor three and factor four respectively.

Table 6: Four-Factor Model Item Factor Loadings.

Items F1 F2 F3 F4 h2 u2 com
Drawing to communicate ideas to others 0.01 0.64 0.08 0.16 0.70 0.30 1.2
Drawing to express myself -0.04 0.17 -0.14 0.84 0.72 0.28 1.2
Drawing to generate creative ideas for
a project -0.04 0.61 0.14 0.20 0.73 0.27 1.3

Drawing when I am under pressure
to come up with an idea 0.02 0.92 -0.20 0.04 0.68 0.32 1.1

Drawing to explain or teach a concept
to others 0.04 0.88 0.16 -0.23 0.77 0.23 1.2

Drawing a 2D object 0.49 0.02 0.19 0.08 0.51 0.49 1.4
Drawing a 3D object 1.09 0.05 -0.11 -0.08 1.00 0.01 1.0
Drawing a person 0.15 -0.05 0.19 0.49 0.51 0.49 1.5
Drawing a product 0.03 0.18 0.61 0.15 0.81 0.19 1.3
Drawing a vehicle -0.06 0.04 0.82 0.02 0.69 0.31 1.0
Drawing a building -0.01 -0.06 0.95 -0.09 0.69 0.31 1.0
Drawing something from my imagination -0.05 -0.08 0.02 0.86 0.60 0.40 1.0
Drawing to think through a problem 0.02 0.48 0.22 0.17 0.68 0.32 1.7

Figure 5: Four-Factor Structure



E. Fit Statistics

The fit indices consisting of Chi-Square, root mean square of the residuals (RMSR), Tucker-Lewis
index (TLI) [39], root mean square error of approximation (RMSEA), and Bayesian information
criterion (BIC) [42] were examined for the three models (See Table 7).

A Two-Factor model was suggested by the scree plot of eigenvalues (see Figure 2). Fit statistics
included a high TLI value (0.9), but the high Chi square value (χ2 = 188.87, p = 3.91E-17) indicated
that the model is significantly different from the observed data (see Table 4). In addition, a high
RMSEA value (0.107) suggests low parsimony of this model. Factor loadings were generally high
overall for both factors ranging from 0.50 to 0.99. Only one item (Item 12, “Draw something from
my imagination”) had cross-loading. See Figure 3 for a detailed structure of items that grouped
together.

The Three-factor model showed comparable performance with a high TLI (0.94), and a lower but
still significant Chi square value (χ2 = 118.48, p = 3.20E-9). The RMSEA value (0.09) was closer
to an acceptable range, indicating better parsimony compared to a Two-Factor model (see Table
5). Factor loadings ranged from 0.46–0.96 overall, and all the items loaded significantly onto one
factor. Each factor had atleast three items, with the strongest-loading item being Item 11 (“Drawing
a building”) in Factor 2 (0.96). See Figure 4 for a detailed structure of items that grouped together.

Our original hypothesis stated the possibility of a fourth factor and that led us to test a Four-factor
model. This model had the lowest Chi square value, but was still significant (χ2 = 74.74, p =
2.80E-5). Fit statistics included the highest TLI value (0.948) and lowest RMSEA (0.077) of all
three models. Nearly half of the items had relatively low factor loadings (0.48–0.64). The first
factor contained only two items, which is acceptable given the DSEI is relatively short. However,
it is difficult to interpret the first factor, as Item 6 (“Drawing a 2D object”) has a low loading of 0.49
and Item 7 (“Drawing a 3D object”) has a very high loading of 1.09. These two drawing activities
are similar, and yet seem to load oppositely onto the same factor. See Figure 5 for a detailed factor
structure of items that grouped together.

Table 7: Fit Statistics of three models.

Model χ2 df p-value RMSR TLI RMSEA BIC
2 Factor 188.87 53 3.91E-17 0.05 0.9 0.107 -97.48
3 Factor 118.48 42 3.20E-09 0.03 0.929 0.09 -108.43
4 Factor 74.74 32 2.80E-05 0.02 0.948 0.077 -98.14

Discussion

We conducted Exploratory Factor Analysis to examine the item correlations and factor structure
of the Drawing Self-Efficacy Instrument (DSEI) in the context of high school art and engineering
classes. The original hypothesis during the DSEI development phase suggested having four factors
to measure the drawing self efficacy of the students. The four factors included drawing specific
things, drawing to communicate ideas, drawing to solve problems, and drawing to create. With
an aim to measure the first factor, “drawing specific things”, six items were developed including
drawing products, buildings, person, vehicle, 2D, and 3D. In order to measure the second factor,



“drawing to communicate ideas”, three items were developed including drawing to communicate
ideas, drawing to explain or teach a concept to others, and drawing to generate creative ideas for a
project. In order to measure the third factor, “drawing to solve problems” two items were developed
that included drawing to think through a truss problem, and drawing under pressure to come up
with an idea. In order to measure the fourth factor, “drawing to create”, two items were developed
that included drawing to express myself and drawing from imagination. A systematic and detailed
exploratory factor analysis was performed to explore the advantages and disadvantages of having
two factors, three factors, and also four factors. An EFA with two factors was conducted as Scree
plot suggested having two factors. Since it was hypothesized to have four factors to measure
drawing efficacy, we performed EFA to explore the possibility of having four factors. Due to
difficulties to interpret two factor model and four factor model, we explored the possibility of
having three factors.

A Three-factor model was found to be the best fit for our data, given fit statistics and model inter-
pretability. While factor loadings were good for a Two-factor model, fit statistics suggested lower
parsimony compared to other models, and it significantly differed from the observed data, with
Item 12 having no clear factor loading. A Four-factor model was not as interpretable based on def-
initions of drawing activity, even though its overall fit was the best of the three models. Therefore,
we concluded a Three-factor model is the most interpretable for the DSEI. The factors are:

• Factor 1: Self-efficacy with respect to drawing practically to solve problems, communicating
with others, and brainstorming ideas

• Factor 2: Self-efficacy with respect to drawing specific objects

• Factor 3: Self-efficacy with respect to drawing to create, expressing ideas, and using one’s
imagination

This model improves on the Two-factor model, where all drawing activity with a purpose is
grouped into a single factor. The Two-factor model does not account for the varied difficulty
among drawing tasks, which impacts a student’s self-efficacy. The Two-factor model groups Item
12 “Drawing something from my imagination” into the same factor as drawing 2D and 3D ob-
jects, buildings, vehicles, and products. Both the Three-factor and Four-factor models differentiate
between drawing to communicate and drawing creatively as expected in our hypothesis. In our hy-
pothesis, we had assumed that drawing 2D and 3D objects were separate skills compared to draw-
ing specific objects such as buildings, vehicles, and products. However, the Three-factor model
made the factor structure more interpretable than the Four-factor model, by grouping drawing 2D
and 3D objects along with drawing objects such as buildings, vehicles, and products.

The Three-factor model connects the ideation techniques of drawing under pressure, drawing to
generate ideas, and drawing to think through a problem with communication purposes for draw-
ing. These include drawing to explain or teach a concept and drawing to communicate ideas.
Drawing for ideation is typically used at the beginning of the engineering or industrial design pro-
cess whether students are brainstorming potential design solutions. Drawing for communication
is more common in the later stages where students are sharing their finished prototypes. Despite
this, communication of ideas or teaching concepts to others are relevant in the beginning stages of
design as well. Thus, it is feasible that all of items were found to belong together. Drawing is a
powerful way to generate, develop, test and share ideas with others.



The Three-factor model also connects drawing a person with drawing to express and drawing
something from imagination together. The Four-factor model also had the same pattern. However,
the Two-factor model grouped drawing a person and drawing something from my imagination
with 2D, 3D drawing and drawing objects. We found that drawing a person best fits with drawing
something from imagination and drawing to express myself as supported by both Three-factor and
Four-factor models. It should be noted that drawing a person requires a different skill set from the
rest of the items listed.

Limitations

We recognize that non-random sampling was a limitation of this study, where student participants
could not be randomly selected to complete the survey. Our sample had a gender imbalance of
fewer females than males, and was limited by demographics collected at the school level rather
than the classroom level. A limitation of the Three-factor model we chose is the variability of
individual item loadings within factors. Although loadings were acceptably high for nearly all
items, within each factor were differences of 0.1–0.2 between items, suggesting that some items
may need revision. In addition, Item 8 (“Drawing a person”) consistently had the lowest factor
loadings across all three models. Further item-level psychometric testing should be used to evaluate
the performance of each item in more detail beyond its overall factor.

Implications and Future Directions

This study investigated the performance of a new Drawing Self-Efficacy Instrument (DSEI) in
context of high school art and engineering education as well as other domains. Our aim was to
observe the DSEI’s measurement of four hypothesized drawing constructs in these environments.
With exploratory factor analysis, we found the Three-factor model to be the best fit with con-
structs of drawing objects, drawing to communicate ideas, and drawing creatively. This model has
implications for drawing instruction, where assignments might include a mix of technical and cre-
ative learning objectives to foster self-efficacy. In addition, learning to draw can be contextualized
within larger projects or challenges, such as engineering design, so that students may have practice
on the communication aspects of drawing which may improve self-efficacy.

Continuing research on this DSEI will include modifying individual items based on further expert
feedback. We also plan to survey wider, more diverse populations of learners beyond engineering
and art classes, to look for differences in self-efficacy. Expanding the target educational level to
postsecondary and professional learners would provide additional validity evidence for the use of
this DSEI across many learning settings. Future directions may expand the DSEI more generally to
any researchers interested in measuring drawing self-efficacy, whether using digital drawing tools
or in traditional contexts such as art studios. Finally, the DSEI may be used for pre/post assessment
to measure effects of drawing skill development using intelligent tutoring systems.
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